首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59609篇
  免费   5036篇
  国内免费   27篇
  2023年   167篇
  2021年   778篇
  2020年   528篇
  2019年   638篇
  2018年   831篇
  2017年   771篇
  2016年   1357篇
  2015年   2394篇
  2014年   2512篇
  2013年   3336篇
  2012年   4236篇
  2011年   4243篇
  2010年   2756篇
  2009年   2441篇
  2008年   3533篇
  2007年   3591篇
  2006年   3392篇
  2005年   3421篇
  2004年   3356篇
  2003年   3150篇
  2002年   3117篇
  2001年   711篇
  2000年   523篇
  1999年   697篇
  1998年   819篇
  1997年   552篇
  1996年   547篇
  1995年   587篇
  1994年   571篇
  1993年   597篇
  1992年   533篇
  1991年   463篇
  1990年   388篇
  1989年   406篇
  1988年   402篇
  1987年   339篇
  1986年   340篇
  1985年   394篇
  1984年   444篇
  1983年   371篇
  1982年   459篇
  1981年   407篇
  1980年   360篇
  1979年   238篇
  1978年   289篇
  1977年   284篇
  1976年   230篇
  1975年   216篇
  1974年   235篇
  1973年   218篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.

Background  

Ethidium homodimer is a cell-membrane impermeant nuclear fluorochrome that has been widely used to identify necrotic cells in culture. Here, we describe a novel technique for evaluating necrosis of epithelial cells in the proximal tubule that involves perfusing ethidium homodimer through the intact rat kidney. As a positive control for inducing necrosis, rats were treated with 3.5, 1.75, 0.87 and 0.43 mg/kg mercuric chloride (Hg2+, intraperitoneal), treatments which have previously been shown to rapidly cause dose-dependent necrosis of the proximal tubule. Twenty-four h after the administration of Hg2+, ethidium homodimer (5 μM) was perfused through the intact left kidney while the animal was anesthetized. The kidney was then removed, placed in embedding medium, frozen and cryosectioned at a thickness of 5 μm. Sections were permeabilized with -20°C methanol and then stained with 4',6-diamidino-2-phenylindole (DAPI) to label total nuclei. Total cell number was determined from the DAPI staining in random microscopic fields and the number of necrotic cells in the same field was determined by ethidium homodimer labeling.  相似文献   
53.
Exhaled nitric oxide (NO) is highly dependent on exhalation flow; thus exchange dynamics of NO have been described by multicompartment models and a series of flow-independent parameters that describe airway and alveolar exchange. Because the flow-independent NO airway parameters characterize features of the airway tissue (e.g., wall concentration), they should also be independent of the physical properties of the insufflating gas. We measured the total mass of NO exhaled (A(I,II)) from the airways after five different breath-hold times (5-30 s) in healthy adults (21-38 yr, n = 9) using air and heliox as the insufflating gas, and then modeled A(I,II) as a function of breath-hold time to determine airway NO exchange parameters. Increasing breath-hold time results in an increase in A(I,II) for both air and heliox, but A(I,II) is reduced by a mean (SD) of 31% (SD 6) (P < 0.04) in the presence of heliox, independent of breath-hold time. However, mean (SD) values (air, heliox) for the airway wall diffusing capacity [3.70 (SD 4.18), 3.56 pl.s(-1).ppb(-1) (SD 3.20)], the airway wall concentration [1,439 (SD 487), 1,503 ppb (SD 644>)], and the maximum airway wall flux [4,156 (SD 2,502), 4,412 pl/s (SD 2,906)] using a single-path trumpet-shaped airway model that considers axial diffusion were independent of the insufflating gas (P > 0.55). We conclude that a single-path trumpet model that considers axial diffusion captures the essential features of airway wall NO exchange and confirm earlier reports that the airway wall concentration in healthy adults exceeds 1 ppm and thus approaches physiological concentrations capable of modulating smooth muscle tone.  相似文献   
54.
We present a survey of moth pollination in woody species of the Cerrado of Central Brazil. Although with the exception of Roupala montana (which has simple polysepalous flowers arranged in dense cymes) all moth pollinated species in this community have tubular flowers, or a pseudo-tube formed from a single folded petal in Qualea grandiflora, settling moth flowers (tube less than 15 mm) vs. hawkmoth flowers (tube more than 50 mm) are markedly different in size. Moths visit some 20 woody Cerrado species, but they are probably effective pollinators of only 13 species or ca.14% of the woody taxa studied, and even in these latter species they are often very sparse visitors. Nevertheless, it is notable that moths are pollinators for 21% of the 38 most commonly distributed woody Cerrado species. Moreover, the reproductive efficacy of the studied moth pollinated species was similar to that of species pollinated by other kind of vectors.  相似文献   
55.
Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles) that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.  相似文献   
56.
The lateral prefrontal and orbitofrontal cortices have both been implicated in emotion regulation, but their distinct roles in regulation of negative emotion remain poorly understood. To address this issue we enrolled 58 participants in an fMRI study in which participants were instructed to reappraise both negative and neutral stimuli. This design allowed us to separately study activations reflecting cognitive processes associated with reappraisal in general and activations specifically related to reappraisal of negative emotion. Our results confirmed that both the dorsolateral prefrontal cortex (DLPFC) and the lateral orbitofrontal cortex (OFC) contribute to emotion regulation through reappraisal. However, activity in the DLPFC was related to reappraisal independently of whether negative or neutral stimuli were reappraised, whereas the lateral OFC was uniquely related to reappraisal of negative stimuli. We suggest that relative to the lateral OFC, the DLPFC serves a more general role in emotion regulation, perhaps by reflecting the cognitive demand that is inherent to the regulation task.  相似文献   
57.
How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object''s “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals'' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived.  相似文献   
58.
Diatoms, an important group of phytoplankton, bloom annually in the Southern Ocean, covering thousands of square kilometers and dominating the region''s phytoplankton communities. In their role as the major food source to marine grazers, diatoms supply carbon, nutrients and energy to the Southern Ocean food web. Prevailing environmental conditions influence diatom phenotypic traits (for example, photophysiology, macromolecular composition and morphology), which in turn affect the transfer of energy, carbon and nutrients to grazers and higher trophic levels, as well as oceanic biogeochemical cycles. The paucity of phenotypic data on Southern Ocean phytoplankton limits our understanding of the ecosystem and how it may respond to future environmental change. Here we used a novel approach to create a ‘snapshot'' of cell phenotype. Using mass spectrometry, we measured nitrogen (a proxy for protein), total carbon and carbon-13 enrichment (carbon productivity), then used this data to build spectroscopy-based predictive models. The models were used to provide phenotypic data for samples from a third sample set. Importantly, this approach enabled the first ever rate determination of carbon productivity from a single time point, circumventing the need for time-series measurements. This study showed that Chaetoceros simplex was less productive and had lower protein and carbon content during short-term periods of high salinity. Applying this new phenomics approach to natural phytoplankton samples could provide valuable insight into understanding phytoplankton productivity and function in the marine system.  相似文献   
59.
For many marine invertebrates, the maximum size of an individual is influenced heavily by environmental factors and may be limited by energetic constraints. In this study, an energetic model developed originally for anemones was applied to the free-living scleractinian Fungia concinna (Verrill) from Moorea (French Polynesia) to test the hypothesis that energetic constraints limit the size of this solitary coral. The modified model assumed that photosynthesis was the primary source of metabolic energy, and that metabolic costs were represented by aerobic respiration; these sources and sinks of energy were compared using daily energy budgets that were analyzed using double logarithmic regressions of energy against coral size. With this approach, energy limitation is characterized by a scaling exponent for energetic cost (bcost) that is larger than the scaling exponent for energy intake (bintake). For the size range of F. concinna studied, bintake = 0.73 ± 0.09 and bcost = 0.46 ± 0.10, thereby demonstrating that large individuals accumulated an energetic surplus, even when the expenditure associated with host tissue and symbiont growth was included in the model. The surplus of energy that this coral acquires as it grows appears to be driven by the scaling of traits associated functionally with the scaling of respiration and photosynthesis. Specifically, tissue biomass displayed a strong positive allometry with respect to surface area (i.e., b > 1), and this constraint on surface area may be the mechanistic basis of the low scaling exponent for metabolic cost. In contrast, the capacity for autotrophy - defined indirectly as Symbiodinium population density and chlorophyll content - increased isometrically with surface area, and likely contributed to the higher scaling exponent for intake relative to cost. Our results suggest that growth in F. concinna is not limited strictly by energy, but instead maximum size must be determined by alternative physiological or ecological constraints.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号